
2025

Solid state systems for quantum information, Correction 9
Assistants : franco.depalma@epfl.ch, filippo.ferrari@epfl.ch

Exercise 1 : Jaynes-Cumming model: spectrum, entanglement and dynamics

In this exercise we are going to study the fundamental properties of the Jaynes-Cumming model,
whose Hamiltonian in the rotating wave approximation is written as follows (ℏ = 1)

Ĥ =
ωq

2
σ̂z + ωrâ

†â+ g(â†σ̂− + âσ̂+). (1)

The Jaynes-Cumming model describes the interaction between a quantized mode of the electro-
magnetic field and a two-level atom, and it is one of the paradigmatic models in quantum optics.
In Eq. (39), ωq is the qubit frequency, ωr is the resonator frequency, and g is the light-matter cou-
pling. The frequency distance between the two-level system and the resonator is called detuning,
∆ = ωq − ωr. We are going to study this model systematically, from its fundamental symmetries
to the exact spectrum and the dynamics.

1. Determine the symmetries of the Hamiltonian. The eigenvectors of the non-interacting Hamil-
tonian (g = 0) are tensor products between the σ̂z ground and excited states, and the Fock
states, H = span{|g, e⟩ ⊗ |n⟩n∈N}. These states are also called the bare eigenvectors. We
will consider this basis throughout the exercise. Find the symmetry of Ĥ and the Hermitian
operator Ô such that [Ĥ, Ô] = 0 (i.e., Ô is a conserved quantity of the system). Write Ô
in the eigenbasis of the non-interacting problem and in terms of the bosonic creation and
annihilation operators and of σ̂z.

2. Find the exact spectrum of the Jaynes-Cumming model. To do this:

(a) Compute the matrix elements of the interacting term (proportional to g) and show that
Ĥ is block-diagonal with 2× 2 blocks. Interpret this finding in light of what you found
in the previous point.

(b) Diagonalize the 2×2 block finding eigenvalues and eigenvectors of Ĥ. Write the eigenvec-
tors in terms of the bare eigenvectors. These eigenvectors are called dressed eigenvectors.
Hint: To find the eigenvectors, use the rotation matrix (also called Bogoliubov matrix)

U =

(
sin(θn/2) cos(θn/2)
cos(θn/2) − sin(θn/2)

)
(2)

And compute the angle θn.

3. Show that the dressed states are generically entangled. Moreover, show that |∆| = 0 corre-
sponds to maximal entanglement whereas |∆| → ∞ gives back a product state. Provide an
intuitive explanation about this finding.
Hint: To prove that a quantum state |Ψ⟩ of a bipartite system H = HA ⊗HB is entangled in
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some basis which is the tensor product of two single-particle bases, |ϕ⟩ = |a⟩ ⊗ |b⟩, you need
to show that the reduced density matrix describing one of the two subsystem is not pure. To
compute the reduced density matrix, you need to perform the partial trace, which amounts
to tracing out one of the two subsystems:

ρ̂a = Trb(ρ̂) =
∑
b

⟨b|Ψ⟩⟨Ψ |b⟩ . (3)

To asses whether ρ̂a is pure or not, you can compute the purity γa = Tr(ρ̂2a). If γa < 1 then
the state |Ψ⟩ is entangled. If γ = 1/dim(Ha), then the system is maximally entangled.

4. We now analyze the Jaynes-Cumming dynamics. To solve for the dynamics, proceed with the
following steps:

(a) Write a single 2× 2 block of the Hamiltonian Ĥ in terms of the Pauli matrices

(b) Rewrite the time evolution operator in the form exp
[
iΩnt

2
(nxσ̂

x + nzσ̂
z)
]
, with n2

x+n
2
z =

1. Calculate Ωn, nz and nx. How is Ωn called?

(c) Rewrite the above results in terms of a 2× 2 matrix.

(d) Starting with the state |ψ(0)⟩ = |g, n+ 1⟩ calculate the state |ψ(t)⟩ at time t. Why is it
sufficient to consider the time evolution of small blocks, instead of the time evolution of
the full Ĥ?

5. Finally, we study atomic inversion in the Jaynes-Cumming model. Use your results from the
previous question to calculate the atomic inversion, given as w(t) = |Ce(t)|2 − |Cg(t)|2 when
starting in the state |Ψ(0)⟩ = |g, n+ 1⟩ with Cg(t) = ⟨g, n+ 1|Ψ(t)⟩ and Ce(t) = ⟨e, n|Ψ(t)⟩ .
What is the atomic inversion, if the detuning is ∆ = 0?

Solution 1 :

1. The Hamiltonian
Ĥ =

ωq

2
σ̂z + ωrâ

†â+ g(â†σ̂− + âσ̂+), (4)

conserves the total number of excitations. Indeed, the unperturbed part of the Hamiltonian,
ωqσ̂

z/2 + ωrâ
†â, does not change the state of the qubit (|g⟩ or |e⟩) or the photon number in

the cavity (a Fock state |n⟩). The perturbation g(â†σ̂− + âσ̂+), instead, conserves the total
number of excitations: if an excitation is lost by the resonator, the qubit gains the excitation
and viceversa. The symmetry associated with the conservation of the total number of particles
is the U(1) symmetry and the symmetry operator is the particle-number operator, N̂ , which
we can write as

N̂ =
∑
n

n |n⟩⟨n|+ |e⟩⟨e| = â†â+
1

2
(−σ̂z + 1). (5)

The first term counts the photon number in the resonator, the second term monitors whether
the qubit is excited. Let’s prove that N̂ is a conserved quantity:

[N̂ , Ĥ] = [N̂ , g(â†σ̂− + âσ̂+)] = g[N̂ , âσ̂+] + g[N̂ , â†σ̂−], (6)
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where we used the fact that ωqσ̂
z/2 + ωrâ

†â trivially commutes with N̂ . Now we have

[â†â− σ̂z/2, âσ̂+] = −âσ̂+ + âσ̂+ = 0, (7)

and
[â†â− σ̂z/2, âσ̂+] = â†σ̂− − â†σ̂− = 0. (8)

From this we deduce that [N̂ , Ĥ] = 0, and N̂ is a conserved quantity in the system.

2. We established that the Jaynes-Cumming Hamiltonian conserves the total number of excita-
tions, i.e., the system is characterized by a U(1) symmetry. A quantum symmetry allows the
block diagonalization of the Hamiltonian, each one labeled by a quantum number, given by
the symmetry operator. The symmetry blocks can be constructed by computing the matrix
elements of Ĥ over the states which respect the symmetry. If the symmetry is U(1), then to
construct the symmetry block with n+ 1 excitations, one has to collect the states describing
n+ 1 excitations.

(a) For the Jaynes-Cumming model, there are only two states which describe n+ 1 excita-
tions: qubit down and n+1 photons in the resonator, |g, n+ 1⟩; qubit up and n photons
in the resonator, |e, n⟩. We have then

⟨g, n+ 1| Ĥ |g, n+ 1⟩ = −ωq

2
+ ωr(n+ 1), (9)

⟨e, n| Ĥ |e, n⟩ = ωq

2
+ ωrn,

⟨g, n+ 1| Ĥ |e, n⟩ = g ⟨g, n+ 1| â†σ̂− |e, n⟩ = g
√
n+ 1,

⟨e, n| Ĥ |g, n+ 1⟩ = g ⟨e, n| âσ̂+ |g, n+ 1⟩ = g
√
n+ 1.

The symmetry block thus reads

M =

(
−ωq

2
+ ωr(n+ 1) g

√
n+ 1

g
√
n+ 1 ωq

2
+ ωrn

)
. (10)

(b) To diagonalize the symmetry block, we first introduce the detuning ∆ = ωq −ωr and we
rewrite the symmetry block as

M = ωr

(
n+

1

2

)
1+

1

2

(
−∆ 2g

√
n+ 1

2g
√
n+ 1 ∆

)
= ωr

(
n+

1

2

)
1+M ′. (11)

To find the eigenvalues, it is sufficient to solve the secular equation

det (M ′ − εI) =

∣∣∣∣ −∆− ε 2g
√
n+ 1

2g
√
n+ 1 ∆− ε

∣∣∣∣ = 0, (12)

which yields the equation
ε2 −∆2 − 4g2(n+ 1) = 0, (13)

whose solutions read
ε± = ±

√
4g2(n+ 1) + ∆2. (14)
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The dressed eigenenergies finally reads

En,± = ωr

(
n+

1

2

)
± 1

2

√
4g2(n+ 1) + ∆2. (15)

Now we find the eigenvectors. The term proportional to ωr(n+ 1/2) gives only a global
shift to the Hamiltonian and does not affect the eigenvectors, which are given by the
eigenvectors of M ′. To find the eignevcetors, we use the Bogoliubov matrix U given in
the text and we need to compute U †M ′U(

sin(θn/2) cos(θn/2)
cos(θn/2) − sin(θn/2)

)(
−a b
b a

)(
sin(θn/2) cos(θn/2)
cos(θn/2) − sin(θn/2)

)
, (16)

where a = ∆/2 and b = g
√
n+ 1. The matrix is diagonal when the off-diagonal elements

in the above matrix product are zero. By carrying out the matrix multiplication, one
arrives at the condition

0 = −a sin(θn/2) cos(θn/2) + b cos2(θn/2)− b sin2(θn/2)− a cos(θn/2) sin(θn/2) (17)
= −a sin(θn) + b cos(θn),

which leads to tan(θn) = b/a = 2g
√
n+ 1/∆. The eigenvectors are therefore

|n,+⟩ = sin

(
θn
2

)
|g, n+ 1⟩+ cos

(
θn
2

)
|e, n⟩ , (18)

|n,−⟩ = cos

(
θn
2

)
|g, n+ 1⟩ − sin

(
θn
2

)
|e, n⟩ .

3. We focus our analysis on |n,+⟩. The associated density matrix is

ρ̂ = |n,+⟩ ⟨n,+| = sin2

(
θn
2

)
|g, n+ 1⟩ ⟨g, n+ 1| (19)

+ sin

(
θn
2

)
cos

(
θn
2

)
[|g, n+ 1⟩ ⟨e, n|+ |e, n⟩ ⟨g, n+ 1|] + cos2

(
θn
2

)
|e, n⟩ ⟨e, n| . (20)

The qubit’s reduced density matrix is obtained by performing the trace over the bosonic Fock
space

ρ̂q = Trn(ρ̂) =
∑
n

⟨n| ρ̂ |n⟩ = sin2

(
θn
2

)
|g⟩ ⟨g|+ cos2

(
θn
2

)
|e⟩ ⟨e| . (21)

Finally, the purity is

γ = Tr(ρ̂2q) = sin4

(
θn
2

)
+ cos4

(
θn
2

)
≤ 1. (22)

We conclude that the dressed state |n,+⟩ is an entangled state.

If ∆ = 0, then θn = atan
(
2g
√
n+ 1/∆

)
= π/2 and γ = 1/4 + 1/4 = 1/2. Therefore, at

∆ = 0 the qubit is maximally entangled with the resonator. If ∆ → ∞, then θn = 0 and
γ = 1+ 0 = 1. Therefore at ∆ → ∞ the qubit is in a pure state and it is not entangled with
the resonator.

4



4. We now study the dynamics of the Jaynes-Cumming model.

(a) The Jaynes-Cumming block can be rewritten in terms of the Pauli matrices as

M = ωr

(
n+

1

2

)
1− ∆

2
σ̂z + g

√
n+ 1σ̂x = ωr

(
n+

1

2

)
1+ ĤTLS. (23)

Notice that the term proportional to ωr(n+ 1/2) is a constant and does not participate
to the dynamics. All the dynamics is generated by ĤTLS.

(b) Let’s us first write down the time evolution of ĤTLS

e−iĤTLSt = e−2it(−∆σ̂z+2g
√
n+1σ̂x). (24)

By comparing it with the given form ei
Ωnt
2

(nz σ̂z+nxσ̂x), we have

Ωn(nxσ̂
x + nzσ̂

z) = −2g
√
n+ 1σ̂x +∆σ̂z (25)

and we obtain

nx = −2g
√
n+ 1

Ωn

nz =
∆

Ωn

(26)

Now, using the condition n2
x + n2

z = 1 one has

4g2(n+ 1)

Ω2
n

+
∆2

Ω2
n

= 1 =⇒ Ωn =
√

∆2 + 4g2(n+ 1), (27)

Here Ωn is called Rabi frequency.

(c) Since n2
x + n2

z = 1, the following identity can be used to express the results:

ei
θ
2
(nxσ̂x+nyσ̂y+nz σ̂z) = cos

(
θ

2

)
+ i sin

(
θ

2

)
(nxσ̂x + nyσ̂y + nzσ̂z). (28)

This leads to

e−iĤTLSt = cos

(
Ωnt

2

)
+ i sin

(
Ωnt

2

)
(nxσ̂x + nzσ̂z) (29)

=

(
cos
(
Ωnt
2

)
+ inz sin

(
Ωnt
2

)
inx sin

(
Ωnt
2

)
inx sin

(
Ωnt
2

)
cos
(
Ωnt
2

)
− inz sin

(
Ωnt
2

)) .
(d) We start with the state |Ψ(0)⟩ = |g, n+ 1⟩. Let us denote |0⟩ = |g, n+ 1⟩ and |1⟩ =

|e, n⟩. Then |Ψ(t)⟩ is given by

|Ψ(t)⟩ = e−iĤTLSt |Ψ(0)⟩ =
(
cos
(
Ωnt
2

)
+ inz sin

(
Ωnt
2

)
inx sin

(
Ωnt
2

)
inx sin

(
Ωnt
2

)
cos
(
Ωnt
2

)
− inz sin

(
Ωnt
2

))(1
0

)
=

[
cos

(
Ωnt

2

)
+ inz sin

(
Ωnt

2

)]
|g, n+ 1⟩+

[
inx sin

(
Ωnt

2

)]
|e, n⟩ . (30)
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5. From the previous point we can easily compute the overlaps between the wave function and
the bare eigenstates. We have

Cg(t) = ⟨g, n+ 1|Ψ(t)⟩ = cos

(
Ωnt

2

)
+ i

∆

Ωn

sin

(
Ωnt

2

)
(31)

Ce(t) = ⟨e, n|Ψ(t)⟩ = −i2g
√
n+ 1

Ωn

sin

(
Ωnt

2

)
.

The atomic inversion is defined as w(t) = |Ce(t)|2 − |Cg(t)|2 and can then be calculated as
follows:

w(t) =
4g2(n+ 1)

Ω2
n

sin2

(
Ωnt

2

)
− cos2

(
Ωnt

2

)
+

∆2

Ω2
n

sin2

(
Ωnt

2

)
(32)

=

[
∆2 + 4g2(n+ 1)

Ω2
n

]
sin2

(
Ωnt

2

)
− cos2

(
Ωnt

2

)
.

For zero detuning (∆ = 0) we have Ωn =
√
4g2(n+ 1) and the atomic inversion,

w(t) = sin2 Ωnt

2
− cos2

(
Ωnt

2

)
. (33)
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Exercise 2 : Schrieffer-Wolff transformation for transmon readout

In this exercise we are going to apply degenerate perturbation theory to describe the trans-
mon qubit readout. The method we adopt is the Schrieffer-Wolff transformation. Consider the
Hamiltonian

Ĥ = Ĥ0 + V̂ , (34)

where Ĥ0 is some unperturbed Hamiltonian of which we know the spectrum, Ĥ0 |Ψn⟩ = En |Ψn⟩,
V̂ is an off-diagonal perturbation. The idea of the Schrieffer-Wolff transformation comes from the
Baker-Campbell-Haussdorff expansion: we perform a unitary transformation on Ĥ with generator
Ŝ. Up to second order, we have

eŜĤe−Ŝ = Ĥ + [Ŝ, Ĥ] +
1

2
[Ŝ, [Ŝ, Ĥ]]. (35)

Now if we write Ĥ = Ĥ0 + V̂ we obtain

eŜĤe−Ŝ = Ĥ0 + V̂ + [Ŝ, Ĥ0] + [Ŝ, V̂ ] +
1

2
[Ŝ, [Ŝ, Ĥ0]] +

1

2
[Ŝ, [Ŝ, V̂ ]]. (36)

We now impose that the generator Ŝ is such that V̂ = −[Ŝ, Ĥ0], i.e., it cancels the contribution of
V̂ at the first order. This leads to the second-order Schrieffer-Wolff formula

Ĥeff = eŜĤe−Ŝ ≃ Ĥ0 +
1

2
[Ŝ, V̂ ]. (37)

The problem is of course finding Ŝ. We state here, without proving it, that the Schrieffer-Wolff
generator at first order is given by

Ŝ =
∑
n,m

⟨Ψn| V̂ |Ψm⟩
En − Em

|Ψn⟩ ⟨Ψm| . (38)

The above two equations provide all the ingredients to compute low-energy effective Hamiltonians.
We apply this formalism to two examples, both relevant for circuit QED.

1. Jaynes-Cumming model. Consider the Hamiltonian

ĤJC =
ωq

2
σ̂z + ωrâ

†â+ g(â†σ̂− + âσ̂+). (39)

Suppose g ≪ |∆| = |ωq − ωr|. Compute the effective low-energy Hamiltonian by means of a
second-order Schrieffer-Wolff transformation. Justify the use of perturbation theory in this
context and give a physical interpretation about the terms appearing in the Ĥeff, JC you find.

2. Dispersive readout of a superconducting transmon qubit. In the previous point, we modeled
the transmon qubit as a two-level system. We now want to go beyond this (very) simple
approximation and we want to take into account the multilevel structure of the transmon.
Consider the Hamiltonian

ĤcQED = ωrâ
†â+ ωq b̂

†b̂− Ec

2
b̂†2b̂2 + g(â†b̂+ b̂†â), (40)
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where â and b̂ are the bosonic modes of the resonator and of the transmon, respectively.
Suppose g ≪ |∆| = |ωq − ωr|. Compute the effective low-energy Hamiltonian Heff, cQED by
means of a second-order Schrieffer-Wolff transformation, and neglect possible counter-rotating
terms.

3. Starting from Heff, cQED, truncate all the energy levels but the first two and compute the
dispersive shift χ (half of the resonator’s energy different when the qubit is up or down,
respectively). Compare it to the Hamiltonian Ĥeff, JC you found in the previous point. Why
are they not coinciding?

Solution 2 :

1. The Jaynes-Cumming Hamiltonian reads:

Ĥ = ωrâ
†â+

ωq

2
σ̂z − g(âσ̂+ + â†σ̂−). (41)

The first two terms are the unperturbed (free) Hamiltonian Ĥ0 with eigenstates |n, σ⟩ =
|n⟩ ⊗ |σ⟩ with n ∈ N and σ ∈ {1,−1}. The last term is the interaction term which describes
the coherent exchange of excitations between the harmonic oscillator states and the two-level
system states. The effective Hamiltonian in the regime g ≪ |∆| can be derived by using the
Schrieffer-Wolff perturbation theory. Calling V̂ = âσ̂+ + â†σ̂− we derive the effective second-
order SW Hamiltonian. First we compute the generator using the formula given in the text.
We have

Ŝ =
∑
m,σ′

∑
n,σ

⟨m,σ′| V̂ |n, σ⟩
Em,σ′ − En,σ

|m,σ′⟩ ⟨n, σ| . (42)

We must compute the matrix elements of V̂ in the unperturbed eigenbasis. We get

⟨m,σ′| âσ̂+ + â†σ̂− |n, σ⟩ = ⟨m,σ′|
(√

nδσ,−1 |n− 1,−σ⟩+
√
n+ 1δσ,+1 |n+ 1,−σ⟩

)
=

√
nδσ,−1δm,n−1δσ′,−σ +

√
n+ 1δσ,+1δm,n+1δσ′,−σ, (43)

so that

Ŝ =
∑
n

√
n |n− 1⟩ ⟨n|

En−1,1 − En,−1

|1⟩ ⟨−1|+
∑
n

√
n+ 1 |n+ 1⟩ ⟨n|
En+1,−1 − En,1

|−1⟩ ⟨1| = 1

∆
(âσ̂+ − â†σ̂−). (44)

Now have to compute the commutator [Ŝ, V̂ ]

Ĥeff, JC = ωrâ
†â+

ωq

2
σ̂z +

g2

2∆
[âσ̂+ − â†σ̂−, âσ̂+ + â†σ̂−]. (45)

Given the relations [â, â†] = 1, [σ̂+, σ̂−] = σ̂z, {σ̂+, σ̂−} = 1, we easily obtain the dispersive
Jaynes-Cumming Hamiltonian

Ĥeff, JC = ωrâ
†â+

1

2

(
ωq +

g2

∆

)
σ̂z +

g2

∆
â†âσ̂z. (46)
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In this limit cavity and qubit are dispersively coupled an measuring the photon number does
not change the state of the qubit. Thus, if we measure the resonance frequency of the cavity,
we know the state of the qubit. In the above equation, the term (g2/∆)â†âσ̂z is the AC Stark
shift and increases with the photon number in the cavity. The shift (g2/∆)σ̂z is instead the
Lamb shift and it is due to the vacuum fluctuations.

2. The transmon qubit Hamiltonian reads

Ĥ = ωrâ
†â+ ωtb̂

†b̂− Ec

2
b̂†2b̂2 − g(â†b̂+ b̂†â). (47)

The unperturbed Hamiltonian is given by the first three terms and its eigenstates read |n, µ⟩
where n labels the states of a linear oscillator and µ labels the states of a nonlinear oscillator.
As before, the last term describe the interaction between the transmon and the cavity. We
want to derive the effective Hamiltonian in the dispersive regime given by |g/∆| ≪ 1 where
∆ = ωt − ωr, through a Schrieffer-Wolff transformation. Calling V̂ = â†b̂+ b̂†â we have

Ŝ =
∑
m,ν

∑
n,µ

⟨m, ν| V̂ |n, µ⟩
Em,ν − En,µ

|m, ν⟩ ⟨n, µ| . (48)

As before, we must compute the matrix elements of V̂ in the unperturbed eigenbasis. We get

⟨m, ν| â†b̂+ b̂†â |n, µ⟩ = ⟨m, ν|
(√

n+ 1
√
ν |n+ 1, µ− 1⟩+

√
n
√
ν + 1 |n− 1, µ+ 1⟩

)
=

√
n+ 1

√
νδm,n+1δν,µ−1 +

√
n
√
µ+ 1δm,n−1δν,µ+1, (49)

while the energy differences are given by

En+1,µ−1 − En,µ = −∆+ Ec(µ− 1),

En−1,µ+1 − En,µ = ∆− Ecµ. (50)

From (49) and (50) we can write down the Schrieffer-Wolff generator as

Ŝ =
∑
n,µ

( √
µ
√
n+ 1

−∆+ Ec(µ− 1)
|n+ 1⟩ ⟨n| ⊗ |µ− 1⟩ ⟨µ|+

√
n
√
µ+ 1

∆− Ecµ
|n− 1⟩ ⟨n| ⊗ |µ+ 1⟩ ⟨µ|

)

=
∑
µ

(√
µ+ 1 |µ+ 1⟩ ⟨µ|

∆− Ecµ
â−

√
µ |µ− 1⟩ ⟨µ|

∆− Ec(µ− 1)
â†
)
. (51)

To derive the effective low-energy Hamiltonian we have to compute [Ŝ, V̂ ]. Let’s proceed by
matrix multiplication

ŜV̂ =
∑
µ

√
µ(µ+ 1) |µ+ 1⟩ ⟨µ− 1|

∆− Ecµ
â2 +

∑
µ

(µ+ 1) |µ+ 1⟩ ⟨µ+ 1|
∆− Ecµ

ââ†

=
∑
µ

µ |µ− 1⟩ ⟨µ− 1|
∆− Ec(µ− 1)

â†â−
∑
µ

√
µ(µ+ 1) |µ− 1⟩ ⟨µ+ 1|

∆− Ec(µ− 1)
â†2, (52)
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while for the other term we obtain

V̂ Ŝ =
∑
µ

√
(µ+ 2)(µ+ 1) |µ+ 2⟩ ⟨µ|

∆− Ecµ
â2 +

∑
µ

(µ+ 1) |µ⟩ ⟨µ|
∆− Ecµ

â†â

=
∑
µ

µ |µ⟩ ⟨µ|
∆− Ec(µ− 1)

ââ† −
∑
µ

√
µ(µ− 1) |µ− 2⟩ ⟨µ|
∆− Ec(µ− 1)

â†2. (53)

We immediately realize that the effective Hamiltonian contains counter-rotating terms pro-
portional to â2 and â†2. Keeping only the diagonal terms and using the commutation relation
[â, â†] = 1. This leads to the expression for the commutator

[Ŝ, V̂ ] =
∑
µ

2µ |µ⟩ ⟨µ|
∆− Ec(µ− 1)

+ â†â
∑
µ

(
2µ

∆− Ec(µ− 1)
− 2(µ+ 1)

∆− Ecµ

)
|µ⟩ ⟨µ| . (54)

The effective low-energy Hamiltonian is given by

Ĥeff, cQED = ωrâ
†â+

∑
µ

(
ωt +

g2

∆− Ec(µ− 1)

)
µ |µ⟩ ⟨µ| − Ec

2
b̂†2b̂2

+ â†â
∑
µ

g2
(

µ

∆− Ec(µ− 1)
− µ+ 1

∆− Ecµ

)
|µ⟩ ⟨µ| , (55)

which is the generalization of the dispersive Jaynes-Cumming Hamiltonian to general nonlin-
ear multilevel systems.

3. If we truncate all the transmon energy levels but the first two we arrive at the effective
Hamiltonian

Ĥeff, cQED = ωrâ
†â+

(
ωt +

g2

∆

)
|1⟩ ⟨1|+ g2

[
− 1

∆
|0⟩ ⟨0|+

(
1

∆
− 2

∆− Ec

)
|1⟩ ⟨1|

]
â†â. (56)

The third term of the above equation describe the dispersive light-matter interaction. If
Ec → ∞, it readily reduces to (g2/∆)σ̂zâ†â, which is the Jaynes-Cumming result. The fact
that the transmon is a multilevel system with a finite Kerr nonlinearity Ec, renormalizes the
dispersive interaction between the cavity and the qubit excited state by a factor −2/(∆−Ec).
To compute the effective dispersive shift when accounting for the multilevel structure of the
transmon, we can write

χcQED =
1

2

[(
1

∆
− 2

∆− Ec

)
+

1

∆

]
=

g2Ec

∆(∆− Ec)
. (57)

For the Jaynes-Cumming model, we find instead χJC = g2/∆. Since Ec ≪ ∆, we have also
χcQED ≪ χJC.
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